52 research outputs found

    PLD1 is overexpressed in an ER-negative MCF-7 cell line variant and a subset of phospho-Akt-negative breast carcinomas

    Get PDF
    We have used a novel variant of the human oestrogen receptor (ER)-positive MCF-7 cell line, TMX2-28, as a model to study breast cancer. TMX2-28 cells show no detectable levels of mRNA or protein expression for the ER and express basal cytokeratins (CKs) 5, 14, and 17. cDNA microarray comparison between TMX2-28 and its parent cell line, MCF-7, identified 1402 differentially expressed transcripts, one of which was, phospholipase D1 (PLD1). Using real-time RT–PCR, we confirmed that PLD1 mRNA levels are 10-fold higher in TMX2-28 cells than in MCF-7 cells. We next examined PLD1 expression in human breast carcinomas. Phospholipase D1 mRNA levels were higher in breast tumours that expressed high-mRNA levels of basal CKs 5 and/or 17, but PLD1 mRNA levels were not significantly higher in ER-negative tumours. Phospholipase D1 protein was overexpressed in 10 of 42 (24%) breast tumours examined by IHC. Phospholipase D1 was overexpressed in 6 of 31 ER-positive tumours and 4 of 11 ER-negative tumours. Phospholipase D1 was overexpressed in three of the four tumours that showed high CK5/17 expression. Five PLD1-positive tumours were negative for phospho-Akt expression, but positive for phospho-mammalian target of rapamycin (mTOR) expression. The other five PLD1-positive breast tumours showed positive expression for phospho-Akt; however, only two of these cases were positive for phospho-mTOR. In this study, we report that PLD1 and phospho-mTOR are coexpressed in a subset of phospho-Akt-negative breast carcinomas

    Bim and Mcl-1 exert key roles in regulating JAK2V617F cell survival

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The JAK2<sup>V617F </sup>mutation plays a major role in the pathogenesis of myeloproliferative neoplasms and is found in the vast majority of patients suffering from polycythemia vera and in roughly every second patient suffering from essential thrombocythemia or from primary myelofibrosis. The V617F mutation is thought to provide hematopoietic stem cells and myeloid progenitors with a survival and proliferation advantage. It has previously been shown that activated JAK2 promotes cell survival by upregulating the anti-apoptotic STAT5 target gene Bcl-xL. In this study, we have investigated the role of additional apoptotic players, the pro-apoptotic protein Bim as well as the anti-apoptotic protein Mcl-1.</p> <p>Methods</p> <p>Pharmacological inhibition of JAK2/STAT5 signaling in JAK2<sup>V617F </sup>mutant SET-2 and MB-02 cells was used to study effects on signaling, cell proliferation and apoptosis by Western blot analysis, WST-1 proliferation assays and flow cytometry. Cells were transfected with siRNA oligos to deplete candidate pro- and anti-apoptotic proteins. Co-immunoprecipitation assays were performed to assess the impact of JAK2 inhibition on complexes of pro- and anti-apoptotic proteins.</p> <p>Results</p> <p>Treatment of JAK2<sup>V617F </sup>mutant cell lines with a JAK2 inhibitor was found to trigger Bim activation. Furthermore, Bim depletion by RNAi suppressed JAK2 inhibitor-induced cell death. Bim activation following JAK2 inhibition led to enhanced sequestration of Mcl-1, besides Bcl-xL. Importantly, Mcl-1 depletion by RNAi was sufficient to compromise JAK2<sup>V617F </sup>mutant cell viability and sensitized the cells to JAK2 inhibition.</p> <p>Conclusions</p> <p>We conclude that Bim and Mcl-1 have key opposing roles in regulating JAK2<sup>V617F </sup>cell survival and propose that inactivation of aberrant JAK2 signaling leads to changes in Bim complexes that trigger cell death. Thus, further preclinical evaluation of combinations of JAK2 inhibitors with Bcl-2 family antagonists that also tackle Mcl-1, besides Bcl-xL, is warranted to assess the therapeutic potential for the treatment of chronic myeloproliferative neoplasms.</p
    corecore